4.8 Article

Black phosphorus as a bipolar pseudospin semiconductor

期刊

NATURE MATERIALS
卷 19, 期 3, 页码 277-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41563-019-0590-2

关键词

-

资金

  1. National Research Foundation (NRF) of Korea [2017R1A2B3011368, 2017R1A5A1014862, 2018K1A3A7A09027641]
  2. Future-leading Research Initiative of Yonsei University [2019-22-0079]
  3. US Department of Energy, Office of Sciences [DE-AC02-05CH11231]
  4. National Research Foundation of Korea [2018K1A3A7A09027641, 2017R1A2B3011368] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Semiconductor devices rely on the charge and spin of electrons, but there is another electronic degree of freedom called pseudospin in a two-level quantum system(1) such as a crystal consisting of two sublattices(2). A potential way to exploit the pseudospin of electrons in pseudospintronics(3-5) is to find quantum matter with tunable and sizeable pseudospin polarization. Here, we propose a bipolar pseudospin semiconductor, where the electron and hole states have opposite net pseudospin polarization. We experimentally identify such states in anisotropic honeycomb crystal-black phosphorus. By sublattice interference of photoelectrons, we find bipolar pseudospin polarization greater than 95% that is stable at room temperature. This pseudospin polarization is identified as a consequence of Dirac cones merged in the highly anisotropic honeycomb system(6,7). The bipolar pseudospin semiconductor, which is a pseudospin analogue of magnetic semiconductors, is not only interesting in itself, but also might be useful for pseudospintronics. Anisotropic honeycomb crystal of black phosphorous is found to have pseudospin polarization greater than 95% at room temperature, attributed to the merging of Dirac cones. This bipolar pseudospin semiconductor may be useful for pseudospintronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据