4.8 Article

Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes

期刊

NATURE MATERIALS
卷 19, 期 4, 页码 428-+

出版社

NATURE RESEARCH
DOI: 10.1038/s41563-019-0576-0

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO) under the VICI [16122]
  2. eScience Centre
  3. NWO [680.91.087]
  4. Advanced Dutch Energy Materials (ADEM) programme of the Dutch Ministry of Economic Affairs, Agriculture and Innovation

向作者/读者索取更多资源

Although all-solid-state Li-ion batteries exhibit enhanced energy densities, electrochemical stability of solid electrolytes remains a challenge. A mechanism explaining the relationship between redox activity and electrochemical stability for typical solid electrolytes is now proposed. All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite-, garnet- and NASICON-type solid electrolytes that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is notably larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据