4.8 Article

Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling

期刊

NATURE
卷 578, 期 7796, 页码 582-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-020-1990-9

关键词

-

资金

  1. Canadian Institutes of Health Research [FRN-148463]
  2. Ontario Research Fund
  3. Canada Research Chair
  4. National Institute of Health [R35GM122556, 5R01GM113172]
  5. Canada 150 Research Chair in Bacterial Cell Biology
  6. CIHR Vanier Canada Graduate Scholarship
  7. CIHR Canada Graduate Scholarship Doctoral Award

向作者/读者索取更多资源

Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections(1). Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family(2). Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter(2). Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics-the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin-that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins-essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection. The glycopeptide antibiotic-related compounds complestatin and corbomycin function by binding to peptidoglycan and blocking the action of autolysins-peptidoglycan hydrolase enzymes that remodel the cell wall during growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据