4.8 Article

Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis

期刊

NATURE
卷 577, 期 7790, 页码 410-+

出版社

NATURE RESEARCH
DOI: 10.1038/s41586-019-1865-0

关键词

-

资金

  1. UCB Pharma
  2. NIH [K01 DK102771]
  3. Evelo Biosciences

向作者/读者索取更多资源

The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules(1). Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins(2). Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs2 that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors(3,4). These receptors have pivotal roles in shaping host innate immune responses(1,5). However, the effect of this host-microorganism biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic FOXP3(+) regulatory T (T-reg) cells expressing the transcription factor ROR gamma. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this T-reg cell population. Restoration of the intestinal BA pool increases colonic ROR gamma T-+ (reg) cell counts and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunological homeostasis via the resulting metabolites. Both dietary and microbial factors influence the composition of the gut bile acid pool, which in turn modulates the frequencies and functionalities of ROR gamma-expressing colonic FOXP3(+) regulatory T cells, contributing to protection from inflammatory colitis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据