4.7 Article

A line-binned treatment of opacities for the spectra and light curves from neutron star mergers

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa485

关键词

gravitational waves; opacity; radiative transfer; stars: neutron

资金

  1. U.S. Department of Energy through the Los Alamos National Laboratory
  2. National Nuclear Security Administration of U.S. Department of Energy [89233218CNA000001]

向作者/读者索取更多资源

The electromagnetic observations of GW170817 were able to dramatically increase our understanding of neutron star mergers beyond what we learned from gravitational waves alone. These observations provided insight on all aspects of the merger from the nature of the gamma-ray burst to the characteristics of the ejected material. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called kilonovae or macronovae. Characteristics of the ejecta include large velocity gradients, relative to supernovae, and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. For example, these opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we investigate the use of fine-structure, line-binned opacities that preserve the integral of the opacity over frequency. Advantages of this area-preserving approach over the traditional expansion-opacity formalism include the ability to pre-calculate opacity tables that are independent of the type of hydrodynamic expansion and thus eliminate the computational expense of calculating opacities within radiation-transport simulations. Tabular opacities are generated for all 14 lanthanides as well as a representative actinide element, uranium. We demonstrate that spectral simulations produced with the line-binned opacities agree well with results produced with the more accurate continuous Monte Carlo Sobolev approach, as well as with the commonly used expansion-opacity formalism. The agreement between the line-binned and expansion-opacity results is explained as arising from the similarity in their opacities in the limit of low optical depth, where radiation transport is important in the ejecta. Additional investigations illustrate the convergence of opacity with respect to the number of included lines, and elucidate sensitivities to different atomic physics approximations, such as fully and semirelativistic approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据