4.6 Article

Cu(II) Ion Adsorption by Aniline Grafted Chitosan and Its Responsive Fluorescence Properties

期刊

MOLECULES
卷 25, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25051052

关键词

chitosan; grafting; Cu(II) adsorption; adsorption mechanism; fluorescence; in situ sensor

资金

  1. Government of Canada through the Natural Sciences and Engineering Research Council of Canada [RGPIN 2016-06197]

向作者/读者索取更多资源

The detection and removal of heavy metal species in aquatic environments is of continued interest to address ongoing efforts in water security. This study was focused on the preparation and characterization of aniline grafted chitosan (CS-Ac-An), and evaluation of its adsorption properties with Cu(II) under variable conditions. Materials characterization provides support for the grafting of aniline onto chitosan, where the kinetic and thermodynamic adsorption properties reveal a notably greater uptake (>20-fold) of Cu(II) relative to chitosan, where the adsorption capacity (Q(m)) of CS-Ac-An was 106.6 mg/g. Adsorbent regeneration was demonstrated over multiple adsorption-desorption cycles with good uptake efficiency. CS-Ac-An has a strong fluorescence emission that undergoes prominent quenching at part per billion levels in aqueous solution. The quenching process displays a linear response over variable Cu(II) concentration (0.05-5 mM) that affords reliable detection of low level Cu(II) levels by an in situ turn-off process. The tweezer-like chelation properties of CS-Ac-An with Cu(II) was characterized by complementary spectroscopic methods: IR, NMR, X-ray photoelectron (XPS), and scanning electron microscopy (SEM). The role of synergistic effects are inferred among two types of active adsorption sites: electron rich arene rings and amine groups of chitosan with Cu(II) species to afford a tweezer-like binding modality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据