4.6 Article

Experimental and Computational Approaches for Solubility Measurement of Pyridazinone Derivative in Binary (DMSO plus Water) Systems

期刊

MOLECULES
卷 25, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25010171

关键词

computational models; pyridazinone derivative; Solution thermodynamics; solubilization

资金

  1. Deanship of Scientific Research at King Saud University [RGP-1438-013]
  2. Deanship of Scientific Research

向作者/读者索取更多资源

The current research work was performed to evaluate the solubilization behavior, solution thermodynamics, and solvation behavior of poorly soluble pyridazinone derivative i.e., 6-phenyl-pyridazin-3(2H)-one (PPD) in various binary solvent systems of dimethyl sulfoxide (DMSO) and water using experimental and various computational approaches. The solubility of PPD in various binary solvent system of DMSO and water was investigated within the temperature range T = 298.2 K to 318.2 K at constant air pressure p = 0.1 MPa, by employing an isothermal technique. The generated solubility data of PPD was computationally represented by five different cosolvency models including van't Hoff, Apelblat, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models. The performance of each computational model for correlation studies was illustrated using root mean square deviations (RMSD). The overall RMSD value was obtained <2.0% for each computational model. The maximum solubility of PPD in mole fraction was recorded in neat DMSO (4.67 x 10(-1) at T = 318.2 K), whereas the lowest one was obtained in neat water (5.82 x 10(-6) at T = 298.2 K). The experimental solubility of PPD in mole fraction in neat DMSO was much higher than its ideal solubility, indicating the potential of DMSO for solubility enhancement of PPD. The computed values of activity coefficients showed maximum molecular interaction in PPD-DMSO compared with PPD-water. Thermodynamic evaluation showed an endothermic and entropy-driven dissolution of PPD in all the mixtures of DMSO and water. Additionally, enthalpy-entropy compensation evaluation indicated an enthalpy-driven mechanism as a driven mechanism for the solvation property of PPD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据