4.7 Article

Intraductal Drug Delivery to the Breast: Effect of Particle Size and Formulation on Breast Duct and Lymph Node Retention

期刊

MOLECULAR PHARMACEUTICS
卷 17, 期 2, 页码 441-452

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.9b00879

关键词

breast cancer; DCIS; intraductal delivery; PLGA; lymph nodes; localized delivery

向作者/读者索取更多资源

Drug delivery by direct intraductal administration can achieve high local drug concentration in the breast and minimize systemic levels. However, the clinical application of this approach for breast cancer treatment is limited by the rapid clearance of the drug from the ducts. With the goal of developing strategies to prolong drug retention in the breast, this study was focused on understanding the influence of particle size and formulation on breast duct and lymph node retention. Fluorescent-labeled polystyrene (PS) particles ranging in size from 100 to 1000 nm were used to study the influence of particle size. Polylactic acid-co-glycolic acid (PLGA) was used to develop and test formulations for intraductal delivery. Cy 5.5, a near-IR dye, was encapsulated in PLGA microparticles, nanoparticles, and the in situ gel to study the biodistribution in rats using an in vivo imager. PS microparticles (1 mu m) showed longer retention in the duct compared to 100 and 500 nm nanoparticles. The ductal retention half-life was 5-fold higher for PS microparticles compared to the nanoparticles. On the other hand, the free dye was cleared from the breast within 6 h. PLGA nanoparticles sustained the release of Cy 5.5 for >4 days. Microparticles and gel showed a much slower release than nanoparticles. PLGA in situ gel and microparticles were retained in the breast for up to 4 days, while the nanoparticles were retained in the breast for 2 days. PLGA nanoparticles and microparticles drained to the axillary lymph node and were retained for up to 24 and 48 h, respectively, while the in situ gel and the free dye did not show any detectable fluorescence in the lymph nodes. Taken together, the results demonstrate the feasibility of prolonged retention in the breast duct and lymph node by optimal formulation design. The findings can serve as a framework to design formulations for localized treatment of breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据