4.8 Article

Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions

期刊

MOLECULAR CELL
卷 77, 期 6, 页码 1176-+

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2020.01.006

关键词

-

资金

  1. EMBO
  2. OIRM
  3. CIHR
  4. CIHR Postdoctoral fellowship
  5. Marie Curie IOF fellowship
  6. Scrimshaw Foundation fellowship
  7. CIHR Vanier Scholarship
  8. Mitacs Elevate postdoctoral fellowship
  9. Canadian Institutes of Health Research
  10. Simon's Foundation
  11. Canada First Research Excellence Fund Medicine by Design Program
  12. Canada Foundation for Innovation
  13. Genome Canada
  14. European Research Council (ERC)
  15. Spanish Ministry of Economy
  16. Brain Canada
  17. Camille Dan Chair Mt. Sinai Hospital
  18. Canada Research Chairs

向作者/读者索取更多资源

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据