4.7 Article

Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor

期刊

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2019.106483

关键词

Spectral element method; Overhead transmission line; Dispersion diagram; Wave propagation; Hysteretic and Aerodynamic damping

向作者/读者索取更多资源

The paper treats a new approach of dynamic analysis of a conductor cable of an overhead transmission line under the theoretical background of spectral element method (SEM). The methodology relies on the analytical solution of the displacement wave equation in the frequency domain; moreover, it both enhances the accuracy of model predictions and reduces the computational efforts when compared to a finite element (FE) model. Two numerical models based on SEM are built for transmission lines taking into account hysteretic and aerodynamics damping and whose analyses consider dispersion diagrams and frequency response functions (FRFs). As SEM leads to a transcendental eigenvalue problem, to obtain the natural frequencies of the conductor, it is used the Wittrick-Williams algorithm. The results presented in the paper show the sensitivity of the response conductor changes according to the tensile load and damping parameters. Finally, the numerical models have compared with the analytical solution of the cable and experimental tests performed at CEPEL's (Electric Power Research Center) laboratory with the overhead conductor Grosbeak cable. The results show outstanding accuracy in both experimental measurements and analytical analysis aspects. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据