4.8 Article

Nanotechnology enabled design of a structural material with extreme strength as well as thermal and electrical properties

期刊

MATERIALS TODAY
卷 31, 期 -, 页码 10-20

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mattod.2019.09.024

关键词

-

资金

  1. Army Research Laboratory [W911NF-15-2-0038]
  2. National Science Foundation [1663287]
  3. U.S. Army Research Office [W911NF-15-1-007]

向作者/读者索取更多资源

The potential benefits of nanocrystalline (NC) alloys for use in various structural applications stem from their enhanced mechanical strengths. However, deformation-induced grain growth in NC materials reduces the strength and is a widely reported phenomenon occurring even at low-temperatures. Controlling such behavior is critical for the maturation of bulk nanocrystalline metals in various advanced engineering applications. Here, we disclose the mechanism by which grain boundary sliding and rotation are suppressed when a NC material is truly thermo-mechanically stabilized against grain growth. Unlike in any other known nanocrystalline metals, the absence of sliding and rotation during loading, at extreme temperatures, is related to short-circuit solute diffusion along the grain boundaries causing the formation of solute clusters and thus a significant change of the grain boundary structures. The departure of this unusual behavior from the well-established norm leads to a strong enhancement of many mutually exclusive properties, such as thermo-mechanical strength, creep resistance, and exceptionally high electrical/thermal conductivity. This work demonstrates that Cu-based nanocrystalline alloys can be used in applications where conventional Cu-based polycrystalline materials are not viable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据