4.6 Article

Preparation of BiOBr-Bi heterojunction composites with enhanced photocatalytic properties on BiOBr surface by in-situ reduction

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2019.104882

关键词

BiOBr nanosheets; Electron-hole pairs; Antibiotic; Kinetic analysis; Photocatalysis mechanism

资金

  1. National Natural Science Foundation of China [21276208]

向作者/读者索取更多资源

A new kind of BiOBr-Bi composite with improved photocatalytic capabilities was successfully prepared by in-situ reduction. The X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet-visible spectroscopy (UV-VisDRS), X-ray photoelectron spectroscopy (XPS), Brunner-Emmet-Teller measurements (BET), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and the electron paramagnetic resonance (EPR) were used to characterize the morphological structures, physical properties and surface element composition of the photocatalysts. In addition, photocatalytic activity was evaluated by degrading the antibiotic norfloxacin (NOR). The results showed that the BiOBr-Bi (40 mmol/L NaBH4) had the highest activity. The degradation rate reached 97.2%. The half-life of NOR was shortened to 25 min. Moreover, the results of capture experiments indicated that the main active groups involved in the photocatalytic process under visible light conditions were center dot O-2(-) and h(+). The reason why the activity of the BiOBr-Bi material photocatalyst increased is that the heterojunction formed by BiOBr with wider bandgap and Bi metal with a lower Fermi level effectively inhibits the recombination of holes and photogenerated electrons, which leads to the enhancement of oxidation capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据