4.3 Article

In vitro degradation behaviour, cytocompatibility and hemocompatibility of topologically ordered porous iron scaffold prepared using 3D printing and pressureless microwave sintering

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.110247

关键词

Iron scaffolds; 3D printing; Degradation rate; Cytocompatibility; Hemocompatibility

资金

  1. Department of Science and Technology-Science and Engineering Research Board (DST-SERB), New Delhi, India [EMR/2017/001550]
  2. Department of Biotechnology, New Delhi, India [BT/01/COE/07/03]

向作者/读者索取更多资源

Biodegradable porous iron having topologically ordered porosity and tailorable properties as per the required application has been the major requirement in the field of biodegradable biomaterials. Hence, in the present study, iron scaffolds with the topologically ordered porous structure were developed and for the first time, the effect of the variation in the topology on the in vitro degradation behaviour, cytocompatibility and hemocompatibility were investigated. Iron scaffold samples were fabricated using a novel process based on the combination of 3D printing and pressureless microwave sintering. To investigate the effect of topology, two different types of topological structures namely Truncated Octahedron (TO) (with variable strut size) and Cubic (C) were used. From the morphological characterization, it was found that fabricated iron scaffold possessed interconnected porosity varying from 50.70%-80.97% which included the random microporosities in the strut and designed macroporosity. Furthermore, it was inferred that the topology of the iron scaffold significantly affected its degradation properties and cytocompatibility. Increase in the weight loss, corrosion rate and reduction in cell viability with the reduction in porosity were obtained. The maximum corrosion rate and weight loss achieved was 1.64 mmpy and 6.4% respectively. Direct cytotoxicity test results revealed cytotoxicity, while prepared iron scaffold samples exhibited excellent hemocompatibility and anti-platelet adhesion property. A comparative study with relevant literature was performed and it was established that the developed iron scaffold exhibited favorable degradation and biological properties which could be tailored to suit appropriate bone tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据