4.3 Article

Palm readings: Manicaria saccifera palm fibers are biocompatible textiles with low immunogenicity

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.110484

关键词

Biotextile; Natural fiber; Plant-based; Biocompatible; Biomaterial; Manicaria saccifera; Tissue engineering

向作者/读者索取更多资源

Plant-based fibers are a potential alternative to synthetic polymer fibers that can yield enhanced biocompatibility and mechanical properties matching those properties of tissue. Given the unique morphology of the bract of the Manicaria saccifera palm, being an interwoven meshwork of fibers, we believe that these fibers with this built-in structure could prove useful as a tissue engineering scaffold material. Thus, we first investigated the fiber's in vitro biocompatibility and immunogenicity. We cultured NIH/3T3 mouse fibroblasts, human aortic smooth muscle cells, and human adipose-derived mesenchymal stem cells on the fiber mats, which all readily attached and over 21 days grew to engulf the fibers. Importantly, this was achieved without treating the plant tissue with extracellular matrix proteins or any adhesion ligands. In addition, we measured the gene expression and protein secretion of three target inflammatory cytokines (IL-1 beta, IL-8, and TNF alpha) from THP-1 human leukemia monocytes cultured in the presence of the biotextile as an in vitro immunological model. After 24 h of culture, gene expression and protein secretion were largely the same as the control, demonstrating the low immunogenicity of Manicaria saccifera fibers. We also measured the tensile mechanical properties of the fibers. Individual fibers after processing had a Young's modulus of 9.51 +/- 4.38 GPa and a tensile strength of 68.62 +/- 27.93 MPa. We investigated the tensile mechanical properties of the fiber mats perpendicular to the fiber axis (transverse loading), which displayed upwards of 100% strain, but with a concession in strength compared to longitudinal loading. Collectively, our in vitro assessments point toward Manicaria saccifera as a highly biocompatible biotextile, with a range of potential clinical and engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据