4.3 Article

A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.110032

关键词

Doxorubicin long-term release; Polycaprolactone microparticles; Hardystonite scaffold; Bone cancer treatment

向作者/读者索取更多资源

Removing malignant bone tumors results in critical size bone defects. These voids in bones should be filled by a proper scaffold that not only can support cell ingrowth and bone regeneration but also it has to show a desirable ability in long-term releasing anticancer drugs in order to prevent the growth of remaining cancer cells. Applying this scaffold can significantly improve the outcome of bone tumors treatment. In this study, a novel way is proposed for immobilization of doxorubicin (DOX)-loaded polycaproloactone (PCL) microparticles on the hardystonite (HT) scaffold surfaces. High interconnected porous HT scaffolds with immobilized DOX-encapsulated PCL microparticles can be successfully fabricated by modified water/oil/water method. In the present work, we verify a slow release of DOX over 30?days from PCL microparticles inside HT scaffold. Our developed HT scaffolds with the long-term release of DOX are more effective in reduction of Saos-2 cancer cells viability and induce higher degrees of apoptosis compared to DOX dip coated HT scaffolds. Encapsulating DOX into PCL microparticles significantly improves the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Our results suggest that by immobilization of polymeric vehicles on the ceramic scaffold for controlled drug release, we can achieve high efficiency in apoptosis of cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据