4.6 Article

Total effective surface area principle for enhancement of capacitive humidity sensor of thick-film nanoporous alumina

期刊

MATERIALS LETTERS
卷 260, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.matlet.2019.126921

关键词

Porous materials; Ceramics; Sensors; Thick films; Alumina; Surfaces

资金

  1. Ministry of Science and Technology (MOST), Taiwan [MOST 106-2221-E-006-101-MY3]

向作者/读者索取更多资源

Total effective surface area is an important factor for environmentally sensing performance. The porous anodic aluminum oxide (AAO) film with a high density of nanopores leads to a tremendous surface area for absorbing water molecules. But such an AAO humidity sensor formed in oxalic acid exhibits a low response of capacitance, especially under the low relative humidity (RH). Here, we demonstrate total effective surface area principle to greatly enhance the performance of AAO capacitive humidity sensor using small anodizing potential in oxalic acid. For pore-dependent surface area, the AAO pore wall would directly affect the absorbance of water molecules and the response of capacitive sensor. Decreasing the anodizing potential reduces both of the pore diameter and interpore distance proportionally but increases the surface area inversely. Therefore, the AAO sensor formed at small 20 V can greatly increase the amount of water molecules absorbed on the wall for enhancing 2-3 times response under low-to-high RH compared to those at 40 and 50 V. The good stability and reliable response/recovery time are also obtained for the AAO sensor synthesized at 20 V in oxalic acid. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据