4.6 Article

Highly permeable, antifouling and antibacterial poly(ether imide) membranes tailored with poly(hexamethylenebiguanide) coated copper oxide nanoparticles

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 240, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2019.122224

关键词

Ultrafiltration; Antifouling; Poly(ether imide); Polymer nanocomposite membrane; Poly(hexamethylenebiguanide); Copper oxide nanoparticles

向作者/读者索取更多资源

Herein, copper oxide nanoparticles (CuO NPs) are synthesized via a facile wet chemical precipitation technique and coated with poly(hexamethylenebiguanide) hydrochloride (PHMB). The surface properties of the resulting PHMB coated CuO (PHMB-c-CuO) are characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) spectroscopy. In order to improve permeation, anti-organic fouling and antibacterial characteristics, PHMB-c-CuO NPs are incorporated into poly(ether imide) (PEI) membrane matrix via a phase inversion technique. The morphological and hydrophilicity investigations confirmed that the influence of PHMBc-CuO NPs improves the macrovoids, porosity (15.2%) and water permeation (192.8 Lm(-2) h(-1) ) of the PEI membrane. The rejection and flux recovery ratio (FRR) of the PEI/PHMB-c-CuO membranes are found to be over 97% towards foulants such as bovine serum albumin (BSA), humic acid (HA) and motor oil demonstrated its excellent separation and antifouling ability. Antibacterial activity of PEI/PHMB-c-CuO membrane is studied using Escherichia colt and Staphylococcus aureus. Results showed a wider inhibition zone thereby confirming the excellent antibacterial ability of the PEI/PHMB-c-CuO membrane. Overall, the PEI/PHMB-c-CuO nanocomposite membranes provided outstanding permeation, anti-fouling, and anti-bacterial performance than pristine PEI membrane and promising for effective water treatment applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据