4.7 Article

Multimechanophore Graft Polymers: Mechanochemical Reactions at Backbone-Arm Junctions

期刊

MACROMOLECULES
卷 52, 期 24, 页码 9561-9568

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.9b01996

关键词

-

资金

  1. NRF, Korea [2018R1C1B6003054]

向作者/读者索取更多资源

Typical multimechanophore polymers (MMPs) are comprised of numerous mechanophores (force-responsive moieties) distributed throughout the backbone of linear polymers. We have developed a new MMP design based on graft polymers with mechanophores linking each arm to the backbone. By utilizing maleimide-anthracene cycloadducts, polymeric species containing anthracene were released from the parent polymer, enabling facile quantification of mechanophore activation. With pulsed ultrasound experiments, we observed that mechanophore activation was dependent on the arm length (a faster rate with longer arms), and we observed that 85% of the polystyrene (PS) arms underwent scission (64% specifically at the mechanophore site) for a graft polymer with 23 kDa arms. Solid-state activation was also investigated with hand-grinding experiments. Fast reactions were observed, with up to 96% of PS arms undergoing scission and 70-75% of mechanophores being activated, for all arm lengths studied. Multimechanophore graft polymers provide important insight into the distribution of forces in topologically complex polymers and may enable the development of new mechanoresponsive materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据