4.7 Article

Modification of physicochemical and mechanical properties of a new bio-based gelatin composite films through composition adjustment and instantizing process

期刊

LWT-FOOD SCIENCE AND TECHNOLOGY
卷 116, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.lwt.2019.108575

关键词

Optimization; Response surface methodology; Psyllium gum; Tragacanth gum; Pea protein isolate; Fluidized dryer

资金

  1. Ministry of Science, Technology and Innovation for EScience Fund [03-01-04-SF1884]

向作者/读者索取更多资源

The production of a new bio-based bovine gelatin (BG) film with incorporation of pea protein isolate (PPI), psyllium gum (PSY) and tragacanth (TRA) gum, and plasticized with glycerol, was completed via a two-stage fluidized bed agglomeration and casting techniques. Fluidization technique was used as a novel method to prepare instant film-forming powder (IFFP) in order to improve the films' physicochemical, mechanical and handling properties. The incorporation of PSY, TRA, and PPI greatly improved the physicochemical, thermal and mechanical properties of the film as compared to control films. Composite films containing high glycerol concentration displayed significant (p < 0.05) reductions in tensile strength (TS) and melting point (T-m) values. The FTIR and DSC results showed that PSY, TRA and PPI interacted effectively with gelatin. In addition, scanning electron microscopy (SEM) showed film surfaces without any cracks. The results demonstrated the miscibility and compatibility of the employed plasticizer (glycerol), polysaccharides (PSY and TRA) and protein (PPI) in composite films. Gelatin-based composite film containing 0.65 g glycerol (w/w, based on 5 g IFFP), 15.0 g gelatin, 3.0 g PPI, and 1.0 g of TRA/PSY (30:70 ratio, mL/mL) possessed the best characteristics in terms of MC, TS, T-m, and swelling properties as determined by response surface methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据