4.6 Article

Quantification of Open-Metal Sites in Metal-Organic Frameworks Using Irreversible Water Adsorption

期刊

LANGMUIR
卷 36, 期 5, 页码 1345-1356

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b03581

关键词

-

资金

  1. UH startup support funds

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) have been the focus of extensive research over the past couple of decades owing to their utility in enhancing performance in a range of applications including but not limited to gas separations, heterogeneous catalysis, and sensing. A rigorous understanding of the role of open-metal sites in molecular processes pertinent to these applications is first and foremost reliant on an accurate measure of the quantity of metal atoms that are coordinatively unsaturated under a given set of experimental conditions. Existing methods for quantifying open-metal sites exhibit drawbacks originating from unselective adsorption, use of high pressures and/or low temperatures, or the handling of potentially hazardous reagents. Here we investigate for the first time the use of room-temperature water adsorption isotherms for the quantification of MOF open-metal site density. We report that the quantity of water adsorbed irreversibly at room temperature on MIL-100 represents the open-metal site density under a given set of activation conditions. We use for this purpose a hydroxyl-containing version of MIL-100(Cr) that enables us to track (using in situ Fourier transform infrared spectroscopy) both dehydration and dehydroxylation events leading to open-metal site creation, providing evidence for site counts measured using irreversible water adsorption. Crucially, this approach circumvents the need for assumptions relating to the identity of open-metal sites and the degree of adsorbate saturation, while also obviating risks associated with the use of hazardous reagents. Given the near-universal presence of water as a labile ligand in the first coordination sphere of possible MOF open-metal sites, we envision that the protocols presented here could represent an approach to counting open-metal sites that is broadly applicable within (and maybe even beyond) the field of MOF research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据