4.6 Article

Rheological and Ionic Transport Properties of Nanocomposite Electrolytes Based on Protic Ionic Liquids and Silica Nanoparticles

期刊

LANGMUIR
卷 36, 期 1, 页码 148-158

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b02848

关键词

-

资金

  1. JSPS KAKENHI [15H05758]
  2. Japan Society for the Promotion of Science (JSPS)
  3. Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST)

向作者/读者索取更多资源

In this study, the effect of hydrophilic silica nanoparticle (AEROSIL 200) addition on the rheological and transport properties of several protic ionic liquids (PILs) consisting of protonated 1,8-diazabicyclo[5.4.0]undec-7-ene cation (DBU) was studied. Interactions between the surface silanol groups of the silica nanoparticles and the ions of these PILs affected the nature of particle aggregation and the hydrogen bonding environment, which was reflected in the nonlinear rheological behaviors and transport properties of their colloidal suspensions. In contrast to shear-thinning gels formed by colloidal suspensions of the silica nanoparticles in [DBU][TFSA] ([TFSA] = [N(SO2CF3)(2)]), [DBU][TfO] ([TfO] = [CF3SO3]), and [DBU][TFA] ([TFA] = [CF3CO2]), a shear-thickening stable suspension was formed in the [DBU][MSA] ([MSA] = [CH3SO3]) system. A relatively strong interaction between the silanol groups and the ions of [DBU] [MSA] and the ability of this PIL to form a thicker solvation layer through hydrogen bonding were assumed to be responsible for this unique behavior. Moreover, the [DBU][MSA]-silica system showed a large enhancement in the conductivity at a certain silica concentration. This enhancement was not observed in the other PIL-silica composites that exhibited shear-thinning behavior. Even though diffusion of ions was found to be restricted in the presence of silica, a preferentially stronger interaction between [MSA] anions and the silica surface resulted in an increase in the number of charge carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据