4.7 Article

Incorporating expert prior in Bayesian optimisation via space warping

期刊

KNOWLEDGE-BASED SYSTEMS
卷 195, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.knosys.2020.105663

关键词

Bayesian optimisation; Gaussian process; Black-box function; Probability integrity transform; Space warping

资金

  1. Australian Government through the Australian Research Council (ARC)
  2. ARC [FL170100006]
  3. Australian Research Council [FL170100006] Funding Source: Australian Research Council

向作者/读者索取更多资源

Bayesian optimisation is a well-known sample-efficient method for the optimisation of expensive black-box functions. However when dealing with big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function. Since the function evaluations are expensive in terms of both money and time, it may be desirable to alleviate this problem. One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation. In its standard form, Bayesian optimisation assumes the likelihood of any point in the search space being the optimum is equal. Therefore any prior knowledge that can provide information about the optimum of the function would elevate the optimisation performance. In this paper, we represent the prior knowledge about the function optimum through a prior distribution. The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum. We incorporate this prior directly in function model (Gaussian process), by redefining the kernel matrix, which allows this method to work with any acquisition function, i.e. acquisition agnostic approach. We show the superiority of our method over standard Bayesian optimisation method through optimisation of several benchmark functions and hyperparameter tuning of two algorithms: Support Vector Machine (SVM) and Random forest. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据