4.5 Article

Experimental Study on Hybrid Organic Phase Change Materials Used for Solar Energy Storage

期刊

JOURNAL OF THERMAL SCIENCE
卷 29, 期 2, 页码 486-491

出版社

SPRINGER
DOI: 10.1007/s11630-020-1224-3

关键词

lauric acid; stearic acid; expanded graphite; phase change material; solar energy

资金

  1. Innovation Chain of Key Industries of Shaanxi Province
  2. National Natural Science Foundation of China [51478386]

向作者/读者索取更多资源

The solar energy utilization in built environment has been limited due to its low heat flux, uneven distribution in time and space and temporal difference in day and night. The phase change materials have been used to collect the fluctuant solar energy to form a stable energy source for the terminal equipment of the buildings. In this study, the hybrid organic phase change materials was prepared for the capillary radiant heating system which formed a cascade utilization of solar energy. Firstly, lauric acid and stearic acid were selected as the basic organic phase change materials and the binary equilibrium phase diagram was completed based on the method of step cooling curve according to the experimental tests data. The results showed that the phase transition temperature of the mixed acid at the lowest eutectic point was 31.2 degrees C and the latent heat value was 264.3 kJ/kg when the mass mixing ratio was 70% for lauric acid and 30% for stearic acid. Secondly, the expanded graphite was used as an additive to enwrap the mixed acid and enhance the heat conductivity. The experimental results showed that when the mass proportion of expanded graphite in the mixed acid was 10%), the mixed acid could be completely enclosed by expanded graphite and the stability of melting and solidification was optimal. Additionally, the phase transition temperature of the hybrid phase change material was 31.5 degrees C and the latent heat value was 217.4 kJ/kg. The novel hybrid phase change material has a lower eutectic point and a higher latent heat of phase change, so it has a large application space and is quite suitable for the cascade utilization of solar energy with capillary network heating system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据