4.7 Article

Computational study of a latent heat thermal energy storage system enhanced by highly conductive metal foams and heat pipes

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 141, 期 5, 页码 1741-1751

出版社

SPRINGER
DOI: 10.1007/s10973-020-09357-9

关键词

Computational study; Thermal energy storage; Melting; Solidification; Porous media; Heat pipe

向作者/读者索取更多资源

Numerical simulations are performed to analyze the thermal characteristics of a latent heat thermal energy storage system with phase change material embedded in highly conductive porous media. A network of finned heat pipes is also employed to enhance the heat transfer within the system. ANSYS-FLUENT 19.0 is used to create a transient multiphase computational model to simulate the thermal behavior of the storage unit. Copper foam is the porous medium used to enhance the heat transfer and is impregnated with the phase change material, potassium nitrate (KNO3). The effects of the porosity of the metal foam and the quantity of heat pipes on the thermal characteristics of storage unit have been investigated. The results indicated that increasing the quantity of the embedded heat pipes leads to drastic acceleration of both charging and discharging process. Impregnating the copper foam with potassium nitrate phase change material significantly affects the total charging and discharging times of the storage unit. It was shown that the porosity of the metal foam plays a key role in the thermal behavior of the system during the charging and discharging processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据