4.7 Article

Morphological optimization of scorpion telson

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2019.103773

关键词

Morphogenesis; Biological organs; Robust design; Scorpion telson; Honey bee stinger

资金

  1. Australian Research Council [DP160101400]
  2. National Natural Science Foundation of China [11432008]

向作者/读者索取更多资源

Nature provides inspirations for solving many challenging scientific and technological problems. In this study, a computational methodology is developed for the morphological optimization of three-dimensional, multi-component biological organs. The structural optimization of scorpion telson, which consists of a curved stinger and a venom container, is considered as an example by using this method. Both experimental and numerical results indicate that, through a long history of natural selection, the load-bearing capacity of the venom apparatus of a scorpion has been optimized together with its flexible segmented tail, important biological functions (e.g., venom storage and transportation), and superb sting strategy. The optimal range of the sting direction of a scorpion is theoretically determined and verified by finite element analysis. The curved scorpion stinger makes the venom container a robust design that is insensitive to the loading direction. The biomechanical mechanisms underlying the robust design are deciphered by comparing the venom apparatuses of scorpions and honey bees. This work deepens our understanding of the structure-property-function interrelations of the venomous sharp weapons of both scorpions and honey bees, and the presented methodology can also be extended to design engineering structures with optimal morphologies (e.g., curved hypodermic needles and segmented robotic arms) and explore other biological tissues and organs. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据