4.6 Article

Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2019.103599

关键词

Bone; Fracture; Elliptical vibration; Orthopedic; Roughness

向作者/读者索取更多资源

Bone is a natural composite and its cutting is a common procedure in orthopedic surgery. The processing damage, cutting force, and cutting heat strongly influence postoperative recovery. In this study, a orthogonal elliptical vibration-assisted (EVA) bone cutting system is developed based on semi-brittle behaviors of bone to experimentally investigate fracture, cutting force, roughness and temperature rise. To prevent large-scale fractures during bone cutting, an extended finite element method model incorporating detailed microstructure and material properties of bone is created to understand the crack-propagation mechanism. Both the simulation and the experiments demonstrate that the elliptical vibration could effectively control the direction of crack propagation. The experimental results also demonstrate that the cutting force and surface roughness decreases with an increase in the vibration frequency or amplitude, whereas temperature rise increases with the vibration frequency. These findings prove that the EVA could allow for low-trauma bone cutting in orthopedic surgery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据