4.6 Article

Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2019.103429

关键词

Stress corrosion cracking; Cryogenic machining; Simulated body fluid; AZ31; Magnesium alloy

向作者/读者索取更多资源

Magnesium and its alloys have recently attracted great attention as potential materials for the manufacture of biodegradable implants. Unfortunately, their inadequate resistance to the simultaneous action of corrosion and mechanical stresses in the human body have hampered their use as implant materials. This work aims at evaluating the Stress Corrosion Cracking (SCC) susceptibility of the AZ31 Mg alloy after being machined under cryogenic cooling. The SCC behaviour was evaluated by means of Slow Strain Rate Tests (SSRTs) in Simulated Body Fluid (SBF) at 37 degrees C. Prior to testing, a full characterization of the machined surface integrity, including microstructural observations, residual stress, nano-hardness measurements and surface texture analysis was carried out together with the assessment of the corrosion properties through potentiodynamic polarization curves. In addition, the morphology of the fracture surfaces after SSRTs was analysed by means of 3D optical profiler and Scanning Electron Microscopy (SEM). The improved corrosion resistance due to the increased extension of the nano-surface layer and to the compressive residual stresses represents the reason of the reduced SCC susceptibility of cryogenically machined AZ31 samples as compared to dry machined ones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据