4.8 Article

Anhydride Post-Synthetic Modification in a Hierarchical Metal-Organic Framework

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 9, 页码 4419-4428

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b13414

关键词

-

资金

  1. Natural Science and Engineering Research Council (NSERC) of Canada
  2. National Natural Science Foundation of China [NSFC21905179, NSFC21506189, NSFC51472021]

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) are important porous materials. Post-synthetic modification (PSM) of MOFs via the pendant groups or secondary functional groups of organic linkers has been widely used to introduce new or enhance existing properties of MOFs for various practical applications. In this work, we have constructed, for the first time, a novel platform for PSM of MOFs by introducing an anhydride functional group into a hierarchically porous MOF (MIL-121) as an effective anchor. We have demonstrated that the combination of the high reactivity of anhydride and hierarchical porosity makes this protocol particularly novel and important, as it led to excellent opportunities of incorporating not only a wide variety of organic molecules with different sizes and chemical nature but also the noble metal complexes in MOFs. Specifically, we show that the anhydride group decorated in the MOF exhibits a high reactivity toward covalently binding 10 different guest molecules including alcohols, amines, thiols, and noble metal (Pt(II)/Pt(IV)) complexes, whereas the hierarchical pores created in the MOF allow the incorporation of guest species varying in size from methanol to larger molecules such as polyaromatic amines. This novel approach provides the community with a new avenue to prepare MOF-based materials for targeted applications. To illustrate this point, we furnish an example of using this new platform to prepare a Pt-based electrocatalyst which shows excellent catalytic activity toward the oxygen reduction reaction (ORR), a pivotal half-reaction in hydrogen oxygen fuel cells and other energy storage and conversion devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据