4.8 Article

Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 9, 页码 4367-4378

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b13106

关键词

-

资金

  1. EPSRC [EP/S018603/1, EP/L017393/1, EP/K014668/1]
  2. DTG
  3. EPSRC [EP/S003053/1, EP/L017393/1, EP/S018603/1, EP/K014668/1, 1947401] Funding Source: UKRI

向作者/读者索取更多资源

Carbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO2 and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO2, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness. Here, a new catalytic polymerization process is reported that selectively and efficiently yields degradable ABA-block polymers, incorporating 6-23 wt % CO2. The polymers are synthesized using a new, highly active organometallic heterodinuclear Zn(II)/Mg(II) catalyst applied in a one-pot procedure together with biobased e-decalactone, cyclohexene oxide, and carbon dioxide to make a series of poly(cyclohexene carbonate-b-decalactone-b-cyclohexene carbonate) [PCHC-PDL-PCHC]. The process is highly selective (CO2 selectivity >99% of theoretical value), allows for high monomer conversions (>90%), and yields polymers with predictable compositions, molar mass (from 38-71 kg mol(-1)), and forms dihydroxyl telechelic chains. These new materials improve upon the properties of poly(cyclohexene carbonate) and, specifically, they show good thermal stability (T-d,T-S similar to 280 degrees C), high toughness (112 MJ m(-3)), and very high elongation at break (>900%). Materials properties are improved by precisely controlling both the quantity and location of carbon dioxide in the polymer chain. Preliminary studies show that polymers are stable in aqueous environments at room temperature over months, but they are rapidly degraded upon gentle heating in an acidic environment (60 degrees C, toluene, p-toluene sulfonic acid). The process is likely generally applicable to many other lactones, lactides, anhydrides, epoxides, and heterocumulenes and sets the scene for a host of new applications for CO2-derived polymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据