4.8 Article

Precision-Guided Missile-Like DNA Nanostructure Containing Warhead and Guidance Control for Aptamer-Based Targeted Drug Delivery into Cancer Cells in Vitro and in Vivo

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 3, 页码 1265-1277

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b09782

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [21775024]
  2. Key Project of Natural Science Foundation of Fujian Province [2019J01070133]
  3. Research Foundation of Education Bureau of Hunan Province [19B384]
  4. Open Project of State Key Laboratory of Chemo/biosensing and Chemometrics [2016010]

向作者/读者索取更多资源

It is crucial to deliver anticancer drugs to target cells with high precision and efficiency. While nanomaterials have been shown to enhance the delivery efficiency once they reach the target, it remains challenging for precise drug delivery to overcome the nonspecific adsorption and off-target effect. To meet this challenge, we report herein the design of a novel DNA nanostructure to act as a DNA nanoscale precision-guided missile (D-PGM) for highly efficient loading and precise delivery of chemotherapeutic agents to specific target cells. The D-PGM consists of two parts: a warhead (WH) and a guidance/control (GC). The WH is a rod-like DNA nanostructure as a drug carrier, whose trunk is a three-dimensionally self-assembled DNA nanoscale architecture from the programmed hybridization among two palindromic DNA sequences in the x-y dimension and two common DNA oligonucleotides in the z direction, making the WH possess a high payload capacity of drugs. The GC is an aptamer-based logic gate assembled in a highly organized fashion capable of performing cell-subtype-specific recognition via the sequential disassembly, mediated by cell-anchored aptamers. Because of the cooperative effects between the WH and the GC, the GC logic gates operate like the guidance and control system in a precision-guided missile to steer the doxorubicin (DOX)-loaded DNA WH toward target cancer cells, leading to selective and enhanced therapeutic efficacy. Moreover, fluorophores attached to different locations of D-PGM and DOX fluorescence dequenching upon release enable intracellular tracing of the DNA nanostructures and drugs. The results demonstrate that by mimicking the functionalities of a military precision-guided missile to design the sequential disassembly of the GC system in multistimuli-responsive fashion, our intrinsically biocompatible and degradable D-PGM can accurately identify target cancer cells in complex biological milieu and achieve active targeted drug delivery. The success of this strategy paves the way for specific cell identity and targeted cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据