4.8 Article

Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 3, 页码 1636-1644

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b13586

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFA0203600]
  2. National Natural Science Foundation of China [31822019, 51703195, 91859116]
  3. One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province [2019C04024]
  4. Zhejiang Provincial Natural Science Foundation of China [LGF19C100002]
  5. Fundamental Research Funds for the Central Universities [2019XZZX004-15, 2018QNA7020]
  6. Zhejiang Pharmaceutical Association [2019ZYY12]

向作者/读者索取更多资源

Recent advances in nanomedicine have facilitated the development of potent nanomaterials with intrinsic enzyme-like activities (nanozymes) for cancer therapy. However, it remains a great challenge to fabricate smart nanozymes that precisely perform enzymatic activity in tumor microenvironment without inducing off-target toxicity to surrounding normal tissues. Herein, we report on designed fabrication of biodegradation-medicated enzymatic activity-tunable molybdenum oxide nanourchins (MoO3-x NUs), which selectively perform therapeutic activity in tumor microenvironment via cascade catalytic reactions, while keeping normal tissues unharmed due to their responsive biodegradation in physiological environment. Specifically, the MoO3-x NUs first induce catalase (CAT)-like reactivity to decompose hydrogen peroxide (H2O2) in tumor microenvironment, producing a considerable amount of O-2 for subsequent oxidase (OXD)-like reactivity of MoO3-x NUs; a substantial cytotoxic superoxide radical (center dot O-2(-)) is thus generated for tumor cell apoptosis. Interestingly, once exposed to neutral blood or normal tissues, MoO3-x NUs rapidly lose the enzymatic activity via pH-responsive biodegradation and are excreted in urine, thus ultimately ensuring safety. The current study demonstrates a proof of concept of biodegradation-medicated in vivo catalytic activity-tunable nanozymes for tumor-specific cascade catalytic therapy with minimal off-target toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据