4.8 Article

Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 1, 页码 633-640

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b12428

关键词

-

资金

  1. Hundred Talent Program of Zhejiang University
  2. National Science Foundation of China [51803179, 21922810, 21701171]
  3. Welch Foundation [AX-1730]
  4. Hundred Talent Program of China

向作者/读者索取更多资源

The separation of ethane (C2H6) from ethylene (C2H4) is of prime importance in the production of polymer-grade C2H4 for industrial manufacturing. It is very challenging and still remains unexploited to fully realize efficient C2H6/C2H4 separation in the emerging hydrogen-bonded organic frameworks (HOFs) due to the weak nature of hydrogen bonds. We herein report the benchmark example of a novel ultrarobust HOF adsorbent (termed as HOF-76a) with a Brunauer-Emmett-Teller surface area exceeding 1100 m(2) g(-1), exhibiting the preferential binding of C2H6 over C2H4 and thus highly selective separation of C2H6/C2H4. Theoretical calculations indicate the key role of the nonpolar surface and the suitable triangular channel-like pores in HOF-76a to sterically match better with the nonplanar C2H6 molecule than the planar C2H4, thus affording overall stronger multipoint van der Waals interactions with C2H6. The exceptional separation performance of HOF-76a for C2H6/C2H4 separation was clearly demonstrated by gas adsorption isotherms, ideal adsorbed solution theory calculations, and simulated and experimental breakthrough curves. Breakthrough experiments on HOF-76a reveal that polymer-grade ethylene gas can be straightforwardly produced from 50/50 (v/v) C2H6/C2H4 mixtures during the first adsorption cycle with a high productivity of 7.2 L/kg at 298 K and 1.01 bar and 18.8 L/kg at 298 K and 5.0 bar, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据