4.8 Article

Photoproximity Profiling of Protein-Protein Interactions in Cells

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 1, 页码 146-153

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b06528

关键词

-

资金

  1. NIH [2T32DK007074-45, DP2GM128199-01]
  2. Damon Runyon Cancer Research Foundation [DFS08-14]
  3. Duchoissos Family Institute at the University of Chicago

向作者/读者索取更多资源

We report a novel photoproximity protein interaction (PhotoPPI) profiling method to map protein-protein interactions in vitro and in live cells. This approach utilizes a bioorthogonal, multifunctional chemical probe that can be targeted to a genetically encoded protein of interest (POI) through a modular SNAP-Tag/benzylguanine covalent interaction. A first generation photoproximity probe, PP1, responds to 365 nm light to simultaneously cleave a central nitroveratryl linker and a peripheral diazirine group, resulting in diffusion of a highly reactive carbene nucleophile away from the POI. We demonstrate facile probe loading, and subsequent interaction- and light-dependent proximal labeling of a model protein-protein interaction (PPI) in vitro. Integration of the PhotoPPI workflow with quantitative LC-MS/MS enabled unbiased interaction mapping for the redox regulated sensor protein, KEAP1, for the first time in live cells. We validated known and novel interactions between KEAP1 and the proteins PGAM5 and HK2, among others, under basal cellular conditions. By contrast, comparison of PhotoPPI profiles in cells experiencing metabolic or redox stress confirmed that KEAP1 sheds many basal interactions and becomes associated with known lysosomal trafficking and proteolytic proteins like SQSTM1, CTSD, and LGMN. Together, these data establish PhotoPPI as a method capable of tracking the dynamic subcellular and protein interaction social network of a redox-sensitive protein in cells with high temporal resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据