4.8 Article

Glucose to 5-Hydroxymethylfurfural: Origin of Site-Selectivity Resolved by Machine Learning Based Reaction Sampling

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 51, 页码 20525-20536

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b11535

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFA0208600]
  2. National Science Foundation of China [21533001, 91745201]

向作者/读者索取更多资源

Glucose pyrolysis, a model system in biomass utilization, is renowned for its great complexity, deep in reaction network hierarchy and rich in reaction patterns. The selectivity in glucose pyrolysis, e.g., the high yield of 5-hydroxymethylfurfural (HMF), a value-added platform product, remains an intriguing puzzle even after 60 years of experimental study. Here we resolve the whole reaction network of glucose pyrolysis using a global-to-global technique for reaction pathway sampling. This is achieved by establishing the first organic chemistry reaction database via stochastic surface walking (SSW) global optimization, building the global neural network (G-NN) potential via machine learning and extensively exploring the reaction network of glucose pyrolysis. In total, 6407 elementary reactions, screened out from more than 150 000 reaction pairs in glucose pyrolysis, are collected in our reaction database. The established reaction network from SSW-NN, further validated by first-principles calculations, reveals that for glucose to HMF, the lowest energy reaction pathway involves fructose and 3-deoxyglucos-2-ene (3-DGE) as key intermediates and a site-selective reaction type, retro-Michael-addition, for three consecutive dehydration steps. The overall barrier is determined to be 1.91 eV, being at least 0.19 eV lower than all previously proposed mechanisms, which assumes direct beta-H elimination dehydration. The lowest pathways to the other two major products, furfural (FF) and hydroxyacetaldehyde (HAA), are also discovered with a similar barrier 1.95 eV, which exhibit a competing nature by sharing the same key intermediate, 3-ketohexose. Since chemical reactions occurring in fast glucose pyrolysis are generally present in biomass chemistry, containing essentially all reaction patterns of C-H-O elements, the methodology designed and the results presented would help to advance reaction design and mechanistic modeling in renewable fuels from biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据