4.5 Article

Pure rotational coherent anti-Stokes Raman scattering spectroscopy of nitric oxide: Determination of Raman tensor invariants

期刊

JOURNAL OF RAMAN SPECTROSCOPY
卷 51, 期 5, 页码 807-828

出版社

WILEY
DOI: 10.1002/jrs.5836

关键词

coherent anti-Stokes Raman scattering; irreducible spherical tensor analysis; laser diagnostics; pure rotational Raman; Raman invariants

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Gas Phase Chemical Physics Program [DE-FG02-03ER15391]

向作者/读者索取更多资源

Coherent anti-Stokes Raman scattering (CARS) measurements of the pure rotational Raman spectrum of nitric oxide were performed. Measurements were performed in a room-temperature gas cell using a dual-broadband pure rotational CARS configuration. In this configuration, a broadband dye laser was used to generate the pump and Stokes beams, and the 355-nm third-harmonic beam from a Nd:YAG laser was used as the probe beam. The Raman spectrum of NO is of significant theoretical interest because of the spin splitting in the ground electronic level of NO. A detailed model of the pure rotational Raman spectrum of NO was developed based on an irreducible tensor analysis using Hund's case (a) wave functions as basis states for the analysis. The pure rotational Raman polarizability tensor element eta v=0 alpha<^>q=02 eta v=0 in the molecular frame was determined for NO based on fitting pure rotational CARS spectra of mixtures of NO and nitrogen (N-2). In addition to the pure rotational CARS spectrum featuring (2)pi(1/2)->(2)pi(1/2) and (2)pi(3/2)->(2)pi(3/2) transitions, there is an electronic Raman transition at 121 cm(-1) between the spin split (2)pi(1/2) and (2)pi(3/2) ground electronic levels that has been the subject of previous theoretical interest, but the value of the tensor invariant eta v=0 alpha<^>q=22 eta v=0 that contributes to the intensity of the electronic Raman transitions has not been quantitatively determined. Analysis of our pure rotational CARS spectra indicates that the magnitude of this term is much smaller than indicated in previous work, but the analysis is complicated by the weakness of the electronic Raman transitions compared with pure rotational transitions in the same spectral region. Future experiments to more definitively determine the magnitude and sign of the eta v=0 alpha<^>q=22 eta v=0 polarizability tensor element are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据