4.8 Article

A novel approach for modelling microfluidic fuel cell coupling vibration

期刊

JOURNAL OF POWER SOURCES
卷 450, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.227728

关键词

Microfluidic fuel cell; Three-dimensional computational model; Vibration; Fuel crossover; Concentration gradient

资金

  1. National Natural Science Foundation of China [2018NSFC51805100]
  2. China Postdoctoral Science Foundation [2019T120374]
  3. Guangxi Natural Science Foundation Program [2017GXNSFBA198198]

向作者/读者索取更多资源

Microfluidic fuel cell (MFC) is an emerging power supply technology for telecommunication base stations and portable instruments that allows long operational time without recharging. Cell performance is severely impaired, however, when the MFC is disturbed by vibrations. To resolve the foregoing problem, a thorough investigation of the vibration mechanism is indispensable. A three-dimensional computational model coupled with multi-physics, including hydrodynamics, electrochemical reaction kinetics, mass transport, and vibration field, is developed for the flow-over and flow-through MFCs in this study. The veracity of the computational model is validated by the agreement between simulation results and experimental data. A comprehensive study, which investigates the influence of vibration parameters (e.g., vibration intensity and frequency) on cell performance, is first conducted to obtain numerical results. The resistance of flow rate and fuel concentration to vibration is thereafter demonstrated. Finally, the effect of vibration on fuel crossover and fuel utilisation is explored. Based on the results of the current study, it is concluded that the anti-vibration property of the flowthrough MFC is better than that of the flow-over MFC. The contributions of this study lay the foundation of MFC structure optimisation to further improve the anti-vibration performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据