4.8 Article

4D-resolved physical model for Electrochemical Impedance Spectroscopy of Li(Ni1-x-yMnxCoy)O2-based cathodes in symmetric cells: Consequences in tortuosity calculations

期刊

JOURNAL OF POWER SOURCES
卷 454, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.227871

关键词

Lithium ion batteries; NMC cathodes; Symmetric cell; Electrochemical impedance spectroscopy; 4D-resolved physical modeling

资金

  1. European Union's Horizon 2020 research and innovation programme through the European Research Council [772873]
  2. Institut Universitaire de France

向作者/读者索取更多资源

Electrochemical impedance spectroscopy (EIS) constitutes an experimental technique used for the characterization of Lithium Ion Battery (LIB) porous electrodes tortuosities. For the first time, a 4D (3D in space + time) physical model is proposed to simulate EIS carried out on NMC porous cathodes, derived from the simulation of their manufacturing process, in symmetric cells. EIS is simulated by explicitly considering the NMC active material, carbon-binder domains (CBD) and pores as spatially-resolved separated phases and assuming different physics for each of them. The calculated impedance responses are compared with in house experimental results coming from NMC-based cathodes prepared in a similar way. We investigate the influence of the physics assumed to describe the CBD behavior, the conductivity of the different solid phases and electrolyte, the relative amount of NMC and CBD and the impact of calendering on the EI spectra, and we compare the results with the experimental EIS measurements. This methodology allows to understand the limitations of using EIS, electric circuit models and homogenized physical models for the determination of the tortuosity factor of NMC-based cathodes, revealing a complex interplay between the conductivity of the solid phases, the electrolyte properties and the cathode meso/microstructure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据