4.7 Article

Factors regulating the differential uptake of persistent organic pollutants in cucurbits and non-cucurbits

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 245, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2019.153094

关键词

Major latex-like protein; Xylem sap protein; Persistent organic pollutant; Polychlorinated biphenyl; Cucurbitaceae; Crop contamination

向作者/读者索取更多资源

Contamination with persistent organic pollutants (POPs) has become a worldwide concern owing to their the toxicity to humans and wildlife. Pumpkin, cucumber, and squash (Cucurbitaceae) accumulate POPs in their shoots in concentrations higher than those in non-cucurbits; to elucidate the underlying molecular mechanisms of this accumulation, POP transporters were analyzed in the xylem sap of cucurbits and non-cucurbits. The 17-kDa xylem sap proteins detected in all cucurbits but not in non-cucurbits readily bound polychlorinated biphenyl (PCB) in all tested cucurbits, except in cucumber and loofah, and to dieldrin in all tested cucurbits. Ten genes encoding major latex-like proteins (MLPs) responsible for the accumulation of PCBs in zucchini plants were cloned from cucurbits. Phylogenetic analysis using MLP sequences identified two separate clades, one containing Cucurbitaceae MLPs and the other containing those of non-cucurbit members. Recombinant MLPs bound PCB and dieldrin. Western blotting with anti-MLP antibodies identified translocatable and non-translocatable MLPs between root and stem xylem vessels. Translocation of MLPs from the root to stem xylem vessels and POP-binding ability of MLPs are important for selective accumulation of MLPs in cucurbits. This study provides basic knowledge about phytoremediation through overexpression of MLP genes and for breeding cucurbits that accumulate less contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据