4.1 Article

Circulation and water renewal of Florida Bay, USA

期刊

BULLETIN OF MARINE SCIENCE
卷 92, 期 2, 页码 153-180

出版社

ROSENSTIEL SCH MAR ATMOS SCI
DOI: 10.5343/bms.2015.1019

关键词

-

资金

  1. NOAA/CIMAS through the South Florida Program [NA17RJ1226]
  2. NOAA's Atlantic Oceanographic and Meteorological Laboratory

向作者/读者索取更多资源

The circulation and exchange processes controlling transport and water renewal within the western subregion of Florida Bay, USA, are presented and compared to our previous findings for the north-central and northeast subregions of the bay. We find there is a common bank/basin flow response to wind forcing that is the primary driver of water renewal for each of the regions studied. Florida Bay is a patchwork of shallow basins surrounded by very shallow banks that are cut through with deeper channels connecting to nearby basins. We observed that, for each subregion studied, there was a net downwind basin outflow through the larger channels that was approximately balanced by a net basin inflow over the surrounding shallow banks. The resulting basin throughflows are used to estimate exchange times for renewal of western basin waters of approximately 1 mo. This exchange time is sufficient to prevent hypersalinity and degradation of water quality in the western basin, in contrast to the north-central subregion, where hypersalinity development is an annual occurrence. Our results highlight the importance of wind induced water renewal in shallow coastal bays with weak to moderate tidal exchange. In addition, we have discovered a significant clockwise circulation pattern through the western basins from strong inflows of coastal waters through Flamingo Channel that turn southward through the western basins before rejoining the coastal flow toward the Florida Keys tidal passages and Atlantic coastal zone. A practical solution to control hypersalinity, sea grass die-off, and water quality degradation of Florida Bay is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据