4.6 Article

Integration of energy homeostasis and stress by parvocellular neurons in rat hypothalamic paraventricular nucleus

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 598, 期 5, 页码 1073-1092

出版社

WILEY
DOI: 10.1113/JP279387

关键词

corticotropin-releasing hormone; feeding; GABA; glucopenia stress; glucose; glutamate; hypothalamus; synapses

资金

  1. Ukrainian Academy of Sciences
  2. Canadian Institutes of Health Research [MT10250, OHN 63278]

向作者/读者索取更多资源

Key points Central regulation of energy homeostasis and stress are believed to be reciprocally regulated, i.e. excessive food intake suppresses, while prolonged hunger exacerbates, stress responses in vivo. This relationship may be mediated by neuroendocrine parvocellular corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus that receive both stress- and feeding-related input. We find that hunger strongly and selectively potentiates, while re-feeding suppresses, a cellular analogue of a stress response induced by acute glucopenia in CRH neurons in rat hypothalamic slices. Neuronal activation in response to glucopenia was mediated synaptically, via the relative enhancement of glutamate over GABA input. These results illustrate how acute stress responses may be initiated in vivo and show that it is reciprocally integrated with energy balance via local hypothalamic mechanisms acting at the level of CRH neurons and their afferent terminals. Increased food intake is a common response to help cope with stress, implying the existence of a previously postulated but imperfectly understood, inverse relationship between the regulation of feeding and stress. We have identified components of the neural circuitry that can integrate these homeostatic responses. Prior fasting (similar to 24 h) potentiates, and re-feeding suppresses, excitatory responses to acute glucopenia in about half of the corticotropin releasing hormone (CRH)-expressing, putatively neurosecretory, stress-related neurons in the paraventricular nucleus of the hypothalamus studied. Glucoprivation stress ex vivo resulted from a preferential relative increase in excitatory (glutamatergic) over inhibitory (GABAergic) inputs. Putative preautonomic cells were less sensitive to fasting, and showed a predominant inhibition to acute glucopenia. We conclude that hunger may sensitize hypothalamic stress responses by acting via local mechanisms, at the level of CRH neurons and their presynaptic inputs. Those mechanisms involve neither presynaptic ATP-sensitive potassium channels nor postsynaptic ATP levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据