4.8 Article

Descriptors for Electron and Hole Charge Carriers in Metal Oxides

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 11, 期 2, 页码 438-444

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b03398

关键词

-

资金

  1. Royal Society [UF130329]
  2. Faraday Institution [FIRG003]
  3. EPSRC [EP/L000202, EP/R029431, EP/P020194/1, EP/L01551X/1, EP/N01572X/1]
  4. European Research Council, ERC [758345]
  5. EPSRC [EP/N01572X/1, EP/S003053/1, EP/P020194/1] Funding Source: UKRI

向作者/读者索取更多资源

Metal oxides can act as insulators, semiconductors, or metals depending on their chemical composition and crystal structure. Metal oxide semiconductors, which support equilibrium populations of electron and hole charge carriers, have widespread applications including batteries, solar cells, and display technologies. It is often difficult to predict in advance whether these materials will exhibit localized or delocalized charge carriers upon oxidation or reduction. We combine data from first-principles calculations of the electronic structure and dielectric response of 214 metal oxides to predict the energetic driving force for carrier localization and transport. We assess descriptors based on the carrier effective mass, static polaron binding energy, and Frohlich electron-phonon coupling. Numerical analysis allows us to assign p- and n-type transport of a metal oxide to three classes: (i) band transport with high mobility; (ii) small polaron transport with low mobility; and (iii) intermediate behavior. The results of this classification agree with observations regarding carrier dynamics and lifetimes and are used to predict 10 candidate p-type oxides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据