4.8 Article

Reduced Internal Friction by Osmolyte Interaction in Intrinsically Disordered Myelin Basic Protein

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 11, 期 1, 页码 292-296

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b03001

关键词

-

向作者/读者索取更多资源

Urea is a strong denaturing osmolyte that disrupts noncovalent bonds in proteins. Here, we present a small-angle neutron scattering (SANS) and neutron spin- echo spectroscopy (NSE) study on the structure and dynamics of the intrinsically disordered myelin basic protein (MBP) denatured by urea. SANS results show that urea-denatured MBP is more compact than ideal polymers, while its secondary structure content is entirely lost. NSE experiments reveal concomitantly an increase of the relaxation time and of the amplitude of internal motions in urea-denatured MBP as compared to native MBP. If interpreted in terms of the Zimm model including internal friction (ZIF), the internal friction parameter decreased by a factor of 6.5. Urea seems to not only smooth local energy barriers, reducing internal friction on a local scale, but also significantly reduces the overall depth of the global energy landscape. This leads to a nearly complete loss of restoring forces beyond entropic forces and in turn allows for larger motional amplitudes. Obviously, the noncovalent H-bonds are largely eliminated, driving the unfolded protein to be more similar to a synthetic polymer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据