4.8 Article

Polariton Assisted Down-Conversion of Photons via Nonadiabatic Molecular Dynamics: A Molecular Dynamical Casimir Effect

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 11, 期 1, 页码 152-159

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b02870

关键词

-

资金

  1. NSF EAGER Award [CHE 1836599]

向作者/读者索取更多资源

Quantum dynamics of the photoisomerization of a single 3,3'-diethyl-2,2'-thiacynine iodide molecule embedded in an optical microcavity was theoretically studied. The molecular model consisting of two electronic states and the reaction coordinate was coupled to a single cavity mode via the quantum Rabi Hamiltonian, and the corresponding time-dependent Schrodinger equation starting with a purely molecular excitation was solved using the Multiconfigurational Time-Dependent Hartree Method (MCTDH). We show that, for single-molecule strong coupling with the photon mode, nonadiabatic molecular dynamics produces mixing of polariton manifolds with differing number of excitations, without the need of counter-rotating light-matter coupling terms. Therefore, an electronic excitation of the molecule at the cis configuration is followed by the generation of two photons in the trans configuration upon isomerization. Conditions for this phenomenon to be operating in the collective strong light-matter coupling regime are discussed and found to be unfeasible for the present system, based on simulations of two molecules inside the microcavity. Yet, our finding suggests a new mechanism that, without ultrastrong coupling, achieves photon down-conversion by exploiting the emergent molecular dynamics arising in polaritonic architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据