4.6 Article

Roughness Effects on the Surface Charge Properties of Silica Nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 124, 期 13, 页码 7274-7286

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c00120

关键词

-

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [118M710]
  2. Center for Scientific Computation at Southern Methodist University

向作者/读者索取更多资源

The surface charge property of silica nanoparticles plays a key role in their function. Previous studies assumed surface charge as a homogeneously distributed constant material property, independent of the nanoparticle size and surface condition. Instead, this study considered surface chemistry as a function of local ionic conditions (Charge Regulation) to calculate the local surface charges around a rough nanoparticle, as an extension to our earlier study (J. Phys. Chem. C 2014, 118 (4), 1836-1842). For the current surface heterogeneity in the form of concave and convex circles, the surface charge showed a distinct local variation: decrease due to the electrical double layer (EDL) overlap in the valleys and increase due to curvature effects on the hills of the surface structure. The average of local surface charges decreased with the decrease of the roughness size (D-R), depending on the particle size (D-P) and pH. We characterized the variation of the average surface charge by a nondimensional group we formed as a measure for the EDL overlap and curvature effects [(D-R/lambda) x (D-R/D-P)]. Based on this, we devised a phenomenological model as an extension to the existing flat surface theory, which can successfully predict the average surface charge around a rough/patterned nanoparticle as a function of the particle size, roughness size, and pH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据