4.7 Article

Continuous Representations of Speed by Striatal Medium Spiny Neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 40, 期 8, 页码 1679-1688

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1407-19.2020

关键词

electrophysiology; encoding; movement; speed; striatum; tuning

资金

  1. National Institutes of Health Intramural Research Program (National Institute of Diabetes and Digestive and Kidney Diseases)
  2. National Institutes of Health Postdoctoral Fellowship Center for Compulsive Behavior Postdoctoral Fellowship
  3. Swiss National Science Foundation [P2GEP3_174898]
  4. National Alliance for Researchon Schizophrenia and Depression Young Investigator Grants
  5. Whitehall Foundation [2017-12-54]
  6. Rita Allen Scholar Award
  7. [R21 DA047127-01]
  8. Swiss National Science Foundation (SNF) [P2GEP3_174898] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The striatum is critical for controlling motor output. However, it remains unclear how striatal output neurons encode and facilitate movement. A prominent theory suggests that striatal units encode movements in bursts of activity near specific events, such as the start or end of actions. These bursts are theorized to gate or permit specific motor actions, thereby encoding and facilitating complex sequences of actions. An alternative theory has suggested that striatal neurons encode continuous changes in sensory or motor information with graded changes in firing rate. Supporting this theory, many striatal neurons exhibit such graded changes without bursting near specific actions. Here, we evaluated these two theories in the same recordings of mice (both male and female). We recorded single-unit and multiunit activity from the dorsomedial striatum of mice as they spontaneously explored an arena. We observed both types of encoding, although continuous encoding was more prevalent than bursting near movement initiation or termination. The majority of recorded units did not exhibit positive linear relationships with speed but instead exhibited nonlinear relationships that peaked at a range of locomotor speeds. Bulk calcium recordings of identified direct and indirect pathway neurons revealed similar speed tuning profiles, indicating that the heterogeneity in response profiles was not due to this genetic distinction. We conclude that continuous encoding of speed is a central component of movement encoding in the striatum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据