4.2 Article

Influence of Urea on the Synthesis of NiCo2O4 Nanostructure: Morphological and Electrochemical Studies

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 20, 期 4, 页码 2526-2537

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2020.17366

关键词

Hydrothermal; NiCo2O4; Electrochemical; Cyclic Voltammetry; Specific Capacitance; Hydrolyzing Agent Urea

资金

  1. University of Memphis, Memphis, TN
  2. Polymer Chemistry Initiative at Pittsburg State University
  3. FIT-DRONES

向作者/读者索取更多资源

The widespread use of miniature electronic devices calls for energy-dense storage strategies. The supercapacitor-based energy storage devices with high areal capacitance are desired energy storage alternative. It is still a challenge to fabricate supercapacitor-based energy devices with consistent performance. The porous metal oxides with large areal capacitance are desired materials for electrode, but there exists a limited understanding of the influence of synthesis parameters on microstructural properties, which largely govern their electrochemical performance. In the present work, hierarchal spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized in the presence of the varying amount of hydrolyzing agent via a simple hydrothermal method coupled with a simple post-annealing process. This work focuses on understanding the influence of hydrolyzing agent in controlling the microstructure and hence ensuing electrochemical properties of the NiCo2O4 based electrode. Based on the urea hydrolyzing content, the as synthesized NiCo2O4 nanostructure varied from the rod, plate to nanoflower. The mesoporous nanostructures, with urea content 1.49 gm, exhibit a sizeable BJH surface area (79.2 m(2) g(-1)) and high mesopore volume (0.140 cm(3) g(-1)). Remarkably, the NiCo2O4 nanoflower shows high specific capacitance of 3143.451 F/g at 2 mV/s scan rate, 1264.5 F/g at 1 A/g current density, energy density of 56 Wh/kg and power density of 8,400 W/kg in 3 M KOH electrolyte. The capacitance loss after 5000 cycles is 48% at the current density of 10 A/g, indicating their excellent cycling stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates indicating promising applications as electrodes in future supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据