4.7 Article

Thermodynamic behavior of [OMIM]-based ionic liquid and H2O systems: Experimental, model prediction and mechanism insights

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 301, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.112493

关键词

Ionic liquid; Water; Vapor pressure; UNIFAC-Lei model; Mechanism analysis

资金

  1. National Natural Science Foundation of China [U1862103]

向作者/读者索取更多资源

The vapor pressures of the binary systems (water + [OMIM][BF4], water + [OMIM][Tf2N], and water + [OMIM][PF6]) were measured by a modified equilibrium still at temperatures ranging from 323.15 to 358.15 K and water mole fraction ranging from 0.1 to 0.9 for water + [OMIM][BF4], from 0.1 to 0.4 for water and [OMIM][Tf2N] and from 0.05 to 0.45 for water + [OMIM][PF6] binary systems, respectively. The experimental results indicate that with the addition of ionic liquids (ILs) the vapor pressure of binary systems decreases. In addition, the popular and widely used UNIFAC-Lei model was extended to the corresponding systems to predict the vapor pressures with the average relative deviations (ARDs) of 4.99%, 4.71% and 5.15% for water + [OMIM][BF4]/[OMIM][Tf2N]/[OMIM][PF6] systems, respectively. Moreover, the binding energy, excess enthalpies and s-profiles were investigated to analyze the thermodynamic behavior at the molecular level. It was found that the interaction between [OMIM][BF4] and water is significantly higher than those between [OMIM][Tf2N]/[OMIM][PF6] and water as shown by the sigma-profiles and the binding energy, and the hydrogen bonding interaction is the dominant driving force contributing to the overall excess enthalpy. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据