4.5 Article

Acetaldehyde dehydrogenase 2 deficiency exacerbates cardiac fibrosis by promoting mobilization and homing of bone marrow fibroblast progenitor cells

期刊

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
卷 137, 期 -, 页码 107-118

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.yjmcc.2019.10.006

关键词

ALDH2; Cardiac fibrosis; FPCs; ROS; SDF-1

资金

  1. National Science Fund for Distinguished Young Scholars [81725002]
  2. Major Research Plan of the National Natural Science Foundation of China [91639104]
  3. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [81521001]

向作者/读者索取更多资源

Cardiac fibrosis is a common feature of various cardiovascular diseases. Previous studies showed that acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbated pressure overload induced heart failure. However, the role and mechanisms of cardiac fibrosis in this process remain largely unknown. This study aimed to investigate the effect of ALDH2 deficiency on cardiac fibrosis in transverse aortic constriction (TAC) induced pressure overload model in mice. Echocardiography and histological analysis revealed cardiac dysfunction and enhanced cardiac fibrosis in TAC-operated animals; ALDH2 deficiency further aggravated these changes. ALDH2 chimeric mice were generated by bone marrow (BM) transplantation of WT mice into the lethally irradiated ALDH2KO mice. The proportion of circulating fibroblast progenitor cells (FPCs) and ROS level in BM after TAC were significantly higher in ALDH2KO mice than in ALDH2 chimeric mice. Furthermore, FPCs were isolated and cultured for in vitro mechanistic studies. The results showed that the stem cell derived factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) axis played a major role in the recruitment of FPCs. In conclusion, our research reveals that increased bone marrow FPCs mobilization and myocardial homing contribute to the enhanced cardiac fibrosis and dysfunction induced by TAC in ALDH2 KO mice via exacerbating accumulation of ROS in BM and myocardial SDF-1 expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据