4.3 Article

Small-Molecule Inhibitors of Inward Rectifier Potassium (Kir) Channels Reduce Bloodmeal Feeding and Have Insecticidal Activity Against the Horn Fly (Diptera: Muscidae)

期刊

JOURNAL OF MEDICAL ENTOMOLOGY
卷 57, 期 4, 页码 1131-1140

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jme/tjaa015

关键词

horn fly; antifeedant; potassium ion channel; insecticide; salivary gland

资金

  1. United States Department of Agriculture-Agricultural Research Service (USDA-ARS, Kerville, TX, USA) [58-3094-5-016]

向作者/读者索取更多资源

Bloodmeal feeding by the horn fly, Haematobia irritans (L.), is associated with reduced milk production and blood loss that ultimately prevents weight gain of calves and yearlings. Thus, blood feeding by H. irritans causes significant economic losses in several continents. As with other arthropods, resistance to the majority of commercialized insecticides reduces the efficacy of current control programs. Thus, innovative technologies and novel biochemical targets for horn fly control are needed. Salivary gland and Malpighian tubule function are critical for H. irritans survivorship as they drive bloodmeal acquisition and maintain ion- and fluid homeostasis during bloodmeal processing, respectively. Experiments were conducted to test the hypothesis that pharmacological modulation of H. irritans inward rectifier potassium (Kir) channels would preclude blood feeding and induce mortality by reducing the secretory activity of the salivary gland while simultaneously inducing Malpighian tubule failure. Experimental results clearly indicate structurally diverse Kir channel modulators reduce the secretory activity of the salivary gland by up to fivefold when compared to control and the reduced saliva secretion was highly correlated to a reduction in bloodmeal acquisition in adult flies. Furthermore, adult feeding on blood treated with Kir channel modulators resulted in significant mortality. In addition to validating the Kir channels of H. irritans as putative insecticide targets, the knowledge gained from this study could be applied to develop novel therapeutic technologies targeting salivary gland or Malpighian tubule function to reduce the economic burden of horn fly ectoparasitism on cattle health and production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据