4.5 Article Proceedings Paper

Tuning the magnetocrystalline anisotropy and spin dynamics in CoxZn1-xFe2O4 (0 <= x <= 1) nanoferrites

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmmm.2019.165737

关键词

-

资金

  1. Council of Scientific & Industrial Research (CSIR), India

向作者/读者索取更多资源

The present work investigates the static and dynamic magnetization behaviour of Co-Zn nanoferrites and optimizes the magnetocrystalline anisotropy and spin relaxation time. The CoxZn1-xFe2O4 (0 <= x <= 1) magnetic nanoparticles are synthesized by pH-controlled co-precipitation method. The Le Bail structural refinement of X-ray diffraction patterns confirms the single phase formation with negligible synthesis dependent site inversion. The room temperature static dc magnetization study shows a continuous transition from hard ferrimagnetic CoFe(2)O(4 )to soft and weakly magnetic ZnFe2O4, which has been successfully explained with Yafet-Kittel model. Furthermore, approach-to-saturation analysis gives effective magnetocrystalline anisotropy of 1.45 x 10(4) J/m(3) and lowest anisotropy field of 1.3 kOe for x = 0.4. Next, the dynamic magnetization is studied with Electron Spin Resonance spectroscopy. The lineshape analysis gives highest g-value of 3.88 and lowest spin-relaxation time (T-2) of 4.86 x 10(-12)s for x = 0.4, which is in agreement with static magnetization study. The optimized magnetocrystalline anisotropy and lowest spin-relaxation time for Zn0.4Co0.6Fe2O4 make it a good candidate for use in different biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据